ConvNext and progress report

汇报人: 王浩宇

https://blog.csdn.net/wqthaha/article/details/125492488 https://arxiv.org/abs/2201.03545

Architecture of Swin Transformer

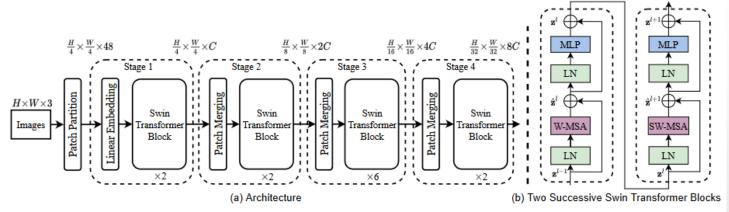
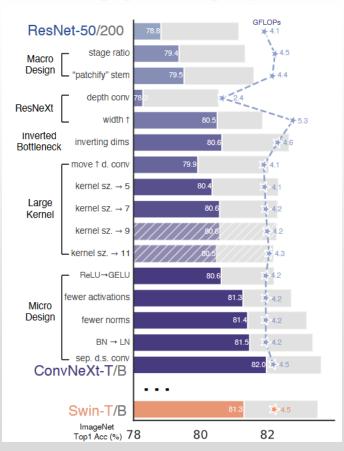
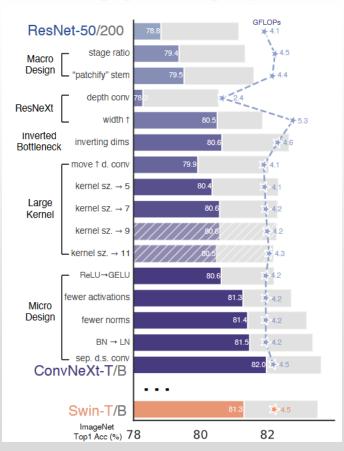



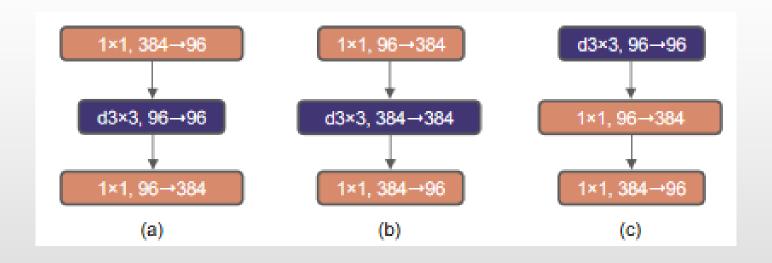
Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

	downsp. rate (output size)	Swin-T	Swin-S	Swin-B	Swin-L
	4×	concat 4×4, 96-d, LN	concat 4×4, 96-d, LN	concat 4×4, 128-d, LN	concat 4×4, 192-d, LN
stage 1	(56×56)	win. sz. 7×7 , dim 96, head 3 \times 2	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 96, head 3 \end{bmatrix} \times 2$	win. sz. 7×7 , dim 128, head 4 \times 2	win. sz. 7×7 , dim 192, head 6 \times 2
stage 2	8× (28×28)	concat 2×2, 192-d, LN	concat 2×2, 192-d, LN	concat 2×2, 256-d, LN	concat 2×2, 384-d, LN
		win. sz. 7×7 , dim 192, head 6 \times 2	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 192, head 6 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 256, head 8 \end{bmatrix} \times 2$	win. sz. 7×7 , dim 384, head 12 \times 2
stage 3	16× (14×14)	concat 2×2, 384-d, LN	concat 2×2, 384-d, LN	concat 2×2, 512-d, LN	concat 2×2, 768-d, LN
		$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 384, head 12 \end{bmatrix} \times 6$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 384, head 12 \end{bmatrix} \times 18$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 512, head 16 \end{bmatrix} \times 18$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 768, head 24 \end{bmatrix} \times 18$
stage 4	32× (7×7)	concat 2×2, 768-d, LN	concat 2×2, 768-d, LN	concat 2×2, 1024-d, LN	concat 2×2, 1536-d, LN
		$\begin{bmatrix} \text{win. sz. } 7 \times 7, \\ \text{dim } 768, \text{head } 24 \end{bmatrix} \times 2$	win. sz. 7×7, dim 768, head 24 × 2	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 1024, head 32 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 1536, head 48 \end{bmatrix} \times 2$

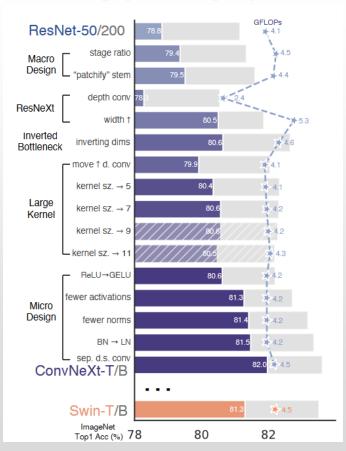
ConvNext



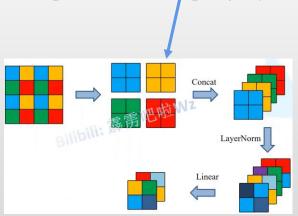
Macro design

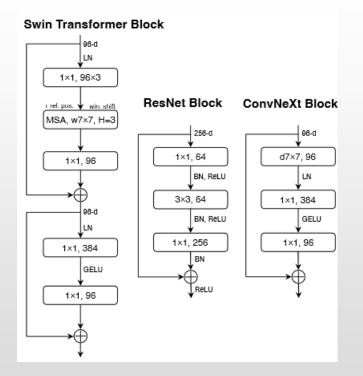

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	7×7, 64, stride 2						
conv2_x	56×56	3×3 max pool, stride 2						
		$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	\[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array} \times 8 \]		
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \times 36 \]		
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$		
	1×1	average pool, 1000-d fc, softmax						
FLOPs		1.8×10 ⁹	3.6×10 ⁹	3.8×10 ⁹	7.6×10 ⁹	CSD(11.3×109		

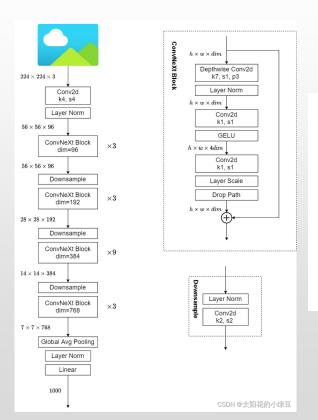
	downsp. rate (output size)	Swin-T	Swin-S	Swin-B	Swin-L
stage 1	4× (56×56)	concat 4×4, 96-d, LN	concat 4×4, 96-d, LN	concat 4×4, 128-d, LN	concat 4×4, 192-d, LN
		$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 96, head 3 \end{bmatrix} \times 2$	win. sz. 7×7 , dim 96, head 3 \times 2	win. sz. 7×7 , dim 128, head 4 $\times 2$	win. sz. 7×7 , dim 192, head 6 $\times 2$
stage 2	8× (28×28)	concat 2×2, 192-d, LN	concat 2×2, 192-d, LN	concat 2×2, 256-d, LN	concat 2×2, 384-d, LN
		$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 192, head 6 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 192, head 6 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 256, head 8 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 384, head 12 \end{bmatrix} \times 2$
stage 3	16× (14×14)	concat 2×2, 384-d, LN	concat 2×2, 384-d, LN	concat 2×2, 512-d, LN	concat 2×2, 768-d, LN
		$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 384, head 12 \end{bmatrix} \times 6$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 384, head 12 \end{bmatrix} \times 18$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 512, head 16 \end{bmatrix} \times 18$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 768, head 24 \end{bmatrix} \times 18$
stage 4	32× (7×7)	concat 2×2, 768-d, LN	concat 2×2, 768-d, LN	concat 2×2, 1024-d, LN	concat 2×2, 1536-d, LN
		$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 768, head 24 \end{bmatrix} \times 2$	win. sz. 7×7, dim 768, head 24 × 2	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 1024, head 32 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 1536, head 48 \end{bmatrix} \times 2$


ConvNext

Inverted Bottleneck




ConvNext


Micro Design

- Replacing ReLU with GELU
- Fewer activation functions
- Fewer normalization layers
- Substituting BN with LN
- Separate downsampling layers

Architecture

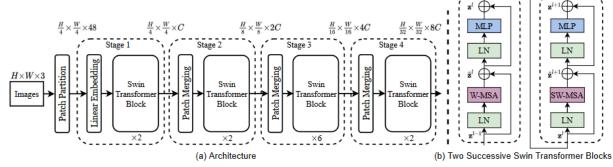
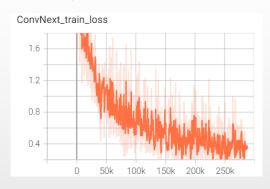
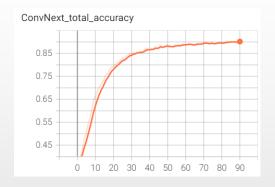
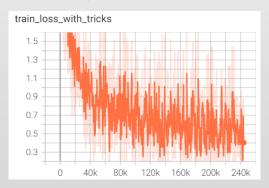
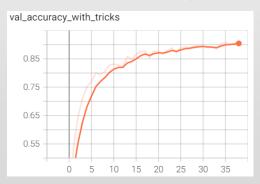
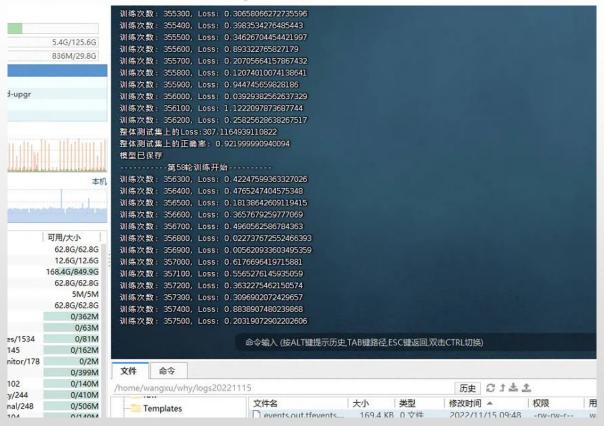




Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.


Experiments


Training with Adam lr=0.0001 on CIFAR10 without augmentation



Training with some tricks(AdamW; cos lr) on CIFAR10 without augmentation

Experiments

Init of distributed training

```
# 初始化各进程环境
init_distributed_mode(args=args)

rank = args.rank
device = torch.device(args.device)
batch_size = args.batch_size
weights_path = args.weights
args.lr *= args.world_size # 学习率要根据并行GPU的数量进行倍增
```

```
def init distributed mode(args):
    if 'RANK' in os.environ and 'WORLD SIZE' in os.environ:
        args.rank = int(os.environ["RANK"])
        args.world_size = int(os.environ['WORLD_SIZE'])
        args.gpu = int(os.environ['LOCAL RANK'])
    elif 'SLURM PROCID' in os.environ:
        args.rank = int(os.environ['SLURM_PROCID'])
        args.gpu = args.rank % torch.cuda.device count()
        print('Not using distributed mode')
        args.distributed = False
        return
    args.distributed = True
    torch.cuda.set_device(args.gpu)
    args.dist backend = 'nccl' # 通信后端, nvidia GPU推荐使用NCCL
    print('| distributed init (rank {}): {}'.format(
        args.rank, args.dist url), flush=True)
    dist.init process group(backend=args.dist backend, init method=args.dist url,
                           world size=args.world size, rank=args.rank)
    dist.barrier()
```

Update the model

```
# 给每个rank对应的进程分配训练的样本索引

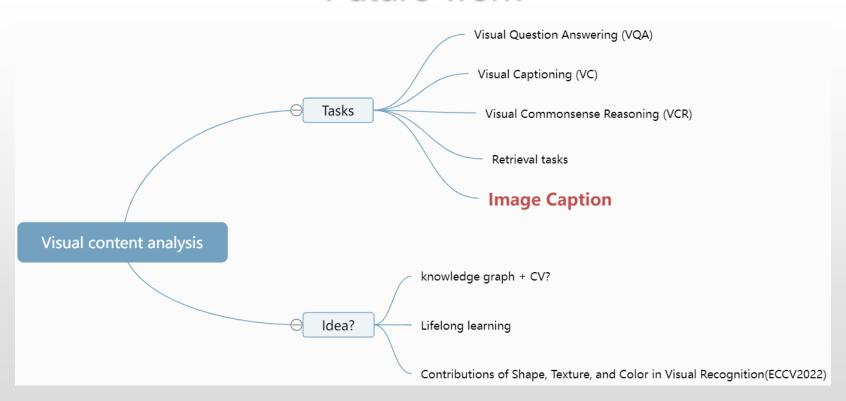
<u>train_sampler</u> = torch.utils.data.distributed.DistributedSampler(train_data_set)

val_sampler = torch.utils.data.distributed.DistributedSampler(val_data_set)
```

```
# 转为DDP模型
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
```

```
# 在进程0中打印训练进度
if is_main_process():
    data_loader = tqdm(data_loader, file=sys.stdout)

for step, data in enumerate(data_loader):
    images, labels = data


    pred = model(images.to(device))

    loss = loss_function(pred, labels.to(device))
    loss.backward()

    loss = reduce_value(loss, average=True)
    mean_loss = (mean_loss * step + loss.detach()) / (step + 1) # update mean losses

# 在进程0中打印平均loss
if is_main_process():
    data_loader.desc = "[epoch {}] mean loss {}".format(epoch, round(mean_loss.item(), 3))
```

Future work

Thank you!