On the importance of initialization and
momentum in deep learning

Author:

Chi Zhang November 10, 2022



Contents

1 Legacy Issues

1.1 Tuningofthemodel . . . . . . ... ... ... ... ..........
2 Introduction

3 Momentum and Nesterov’s Accelerated Gradient
31 TheSGDmethod . . ... ... ... .. .. .. .. .. ... ...
3.2 The momentummethod . . . . . . ... . ... ... ..........
3.3 The Nesterov’s accelerated gradient method . . . . . . ... ... ...
3.4 Why the momentum method was not taken seriously before . . . . . . .
3.5 "Recent"Findings . . . . . . .. .. .. ... ...
3.6 The Relationship between CMand NAG . . . . . . .. ... ... ...

3.7 A mathematical calculation quantifies the relationship between two nu-
merical algorithms . . . . . . . ... ...

4 Momentum and HF
5 Discussion

6 Literature Research



1 Legacy Issues

1.1 Tuning of the model

1. Data augmentation on the training set

# Import data and data enhancement

transform_train = torchvision.transforms.Compose ([
torchvision .transforms . ToTensor (),

# Randomly flip the picture
# Randomly adjust brightness

torchvision .transforms.RandomHorizontalFlip () ,

torchvision . transforms.RandomGrayscale () ,

torchvision . transforms .RandomCrop (32, padding=4),

torchvision .transforms .Normalize (mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])

D

Tuned final test set accuracy of about 80.28%. (30 epochs)

2. Dynamic tuning of learning rate

Tuned final test set accuracy of about 82.50%. (30 epochs) 83.03%. (50 epochs)
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Figure 1: Accuracy in the train dataset and testset
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Figure 2: Loss in the train dataset

2 Introduction

1. The current dilemma of deep learning

Deep and recurrent neural networks (DNNs and RNNs respectively) are powerful
models that were considered to be almost impossible to train using stochastic
gradient descent with momentum. [5]

2. What caused this dilemma

* the use of poorly designed standard random initializations

* failure to use a specific type of momentum wisely
3. Contribution of this paper

* a much more thorough investigation of the difficulty of training deep and
temporal networks

* improvements in initialization and momentum meta-parameters to give bet-
ter results for training

* improvements to the HF method(Hessian-free Optimization)

3 Momentum and Nesterov’s Accelerated Gradient

3.1 The SGD method

Given an objective f(6) to be minimized, classical momentum is given by:

viy1 = —€Vf(0)
011 =6 +vi

6]
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where € > 0 is the learning rate, and V f(0) is the gradient at 6;.

3.2 The momentum method

Given an objective f(6) to be minimized, classical momentum is given by:

Vi1 = vy —EVF(0)
011 =6 +vi1

2)

where € > 0 is the learning rate, u € [0, 1] is the momentum coefficient, and Vf(0) is
the gradient at 6.
3.3 The Nesterov’s accelerated gradient method

Given an objective f(6) to be minimized, classical momentum is given by:

Vel = My, — V(0 + pvy)
041 =6 +vi1

3)

where € > 0 is the learning rate, u € [0,1] is the momentum coefficient, and V f(0) is
the gradient at 6;.

3.4 Why the momentum method was not taken seriously before

While the classical convergence theories for both methods rely on noiseless
gradient estimates (i.e., not stochastic), with some care in practice they are
both applicable to the stochastic setting.

3.5 "Recent'" Findings

However, while local convergence is all that matters in terms of asymptotic
convergence rates (and on certain very simple/shallow neural network opti-
mization problems it may even dominate the total learning time), in practice,
the "transient phase" of convergence (Darken Moody, 1993), which occurs be-
fore fine local convergence sets in, seems to matter a lot more for optimizing
deep neural networks. In this transient phase of learning, directions of reduc-
tion in the objective tend to persist across many successive gradient estimates
and are not completely swamped by noise.

3.6 The Relationship between CM and NAG

Figure 3 shows the relationship between CM and NAG.



Figure 3: (Top) Classical Momentum (Bottom), Nesterov Accelerated Gradient

Figure 4 shows the trajectories of CM, NAG, and SGD.
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Figure 4: (Green curve) Classical Momentum, (Bule curve) Nesterov Accelerated Gra-
dient and (Red curve) SGD
3.7 A mathematical calculation quantifies the relationship between

two numerical algorithms

Proof in the pdf file.
task Osep 0.9N | 0.99N | 0.995N | 0.999N || 0.9M | 0.99M | 0.995M | 0.999M || SGD¢ HEF' HF*
Curves 0.48 0.16 0.096 0.091 0.074 0.15 0.10 0.10 0.10 0.16 0.058 0.11
Mnist 2.1 1.0 0.73 0.75 0.80 1.0 0.77 0.84 0.90 0.9 0.69 1.40
Faces 36.4 14.2 8.5 7.8 7.7 15.3 8.7 8.3 9.3 NA 7.5 12.0

Figure 5: Results of various experiments



4 Momentum and HF

Algorithm 1 The Hessian-free optimization method
I: for n=1.2,... do

On < vf(en)

compute/adjust A by some method

define the function B,,(d) = H(0,,)d + A\d

Pn — CG-Minimize(B,,. —g,)

6: HnJrl — Oy + Pn

7: end for

Figure 6: The Hessian-free optimization method flowchart [2]

Here is the approximate difference formula for Hd in the algorithm.

VF(0+ed)—VF(0)

Hd = lim
e—0 E
problem biases 0 0.9N [ 0.98N 0.995N 0.9M [ 0.98M [ 0.995M
add T'=80 0.82 0.39 0.02 0.21 0.00025 0.43 0.62 0.036
mul 7" = 80 0.84 0.48 0.36 0.22 0.0013 0.029 0.025 0.37
mem-5 7" = 200 2.5 1.27 1.02 0.96 0.63 1.12 1.09 0.92
mem-20 7= 80 8.0 5.37 2.77 | 0.0144 | 0.00005 1.75 0.0017 0.053

Figure 7: Results of various experiments

5 Discussion

In this paper we have completed this picture and demonstrated conclusively
that a large part of the remaining performance gap that is not addressed by
using a well-designed random initialization is in fact addressed by careful use
of momentumbased acceleration (possibly of the Nesterov type).

6 Literature Research

1. Algorithm stability analysis:
Algorithmic Instabilities of Accelerated Gradient Descent [1]

Damped Anderson Mixing for Deep Reinforcement Learning: Acceleration, Con-

vergence, and Stabilization [4]

2. Problem-specific optimization algorithms :

Near Optimal Policy Optimization via REPS [3]

An Even More Optimal Stochastic Optimization Algorithm: Minibatching and

Interpolation Learning [6]
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